gaussian_hermite
- hcipy.mode_basis.gaussian_hermite(n, m, mode_field_diameter=1, grid=None)
- Creates a Gaussian-Hermite mode. - This function evaluates a (n, m) order Gaussian-Hermite mode on a grid. The definition of the modes are the following, \[\exp{\left(-\frac{r^2}{w_0^2}\right)} H_n\left(\sqrt{2}\frac{x}{w_0}\right) H_m\left(\sqrt{2}\frac{y}{w_0}\right).\]- Here \(w_0\) is the mode_field_radius, which is \(\mathrm{MFD}/2\). This defintion follows the Physicists definition of the Hermite polynomials. The modes are numerical normalized to have a total power of 1. - More details on the Hermite Polynomials can be found on: http://mathworld.wolfram.com/HermitePolynomial.html - Parameters:
- nint
- The x order. 
- mint
- The y order. 
- mode_field_diameterscalar
- The mode field diameter of the Gaussian-Laguerre mode. 
- gridGrid
- The grid on which to evaluate the mode. 
 
- Returns:
- Field
- The evaluated mode.